Note

Re-examination of the acid hydrolysis of 5,6-anhydro-1,2-O-isopropylidene- β -L-idofuranose

NEIL BAGGETT AND AMARJIT K. SAMRA

Department of Chemistry, University of Birmingham, P.O. Box 363, Birmingham B15 2TT (Great Britain)

(Received June 24th, 1983; accepted for publication, September 20th, 1983)

For the synthesis of 4-methylcoumarin-7-yl α -L-idopyranosiduronic acid, a convenient, sensitive substrate¹ for α -L-iduronidase (EC 3.2.1.76), we required quantities of suitable L-idopyranose derivatives. During the course of this work, a novel synthesis of L-idose (1) was reported², and has now been included, in modified form, in a treatise of reliable synthetic methods in carbohydrate chemistry³. This novel method was recommended because it involved fewer steps and gave better yields than previous syntheses, but we have found that the syrupy L-idose obtained thereby is impure and now describe a modified method for the synthesis of pure 2,3,4-tri-O-acetyl-1,6-anhydro- β -L-idopyranose.

In the reported^{2,3} synthesis, the D-gluco \rightarrow L-ido transformation was achieved by an intramolecular displacement at C-5 during the synthesis of 5,6-anhydro-1,2-O-isopropylidene- β -L-idofuranose (2). Hydrolysis was then claimed to give 1 in essentially quantitative yield. The stereoisomeric gluco-epoxide 3 gives⁴ a mixture of products on hydrolysis, and the difference in behaviour of 2 and 3 was ascribed² to conformational features present in the acyclic transition-state involved in the reaction of 3.

We experienced difficulties in two steps in this synthesis of L-idose. First, as previously reported⁵, reaction of the 5-sulphonate 4 with sodium methoxide gave 2 contaminated with ~6% of an isomer; pure 2 could only be obtained by chromatography, which is undesirable for large-scale preparations. Further, when pure 2 was hydrolysed with dilute acid according to the published² method (25mM H_2SO_4 , 45°, 2.5 h) and the resulting syrupy product was subjected to ion-exchange chromatography of the borate complexes⁶, six components were detected (Table I, entry 1a). The expected product, L-idose (1) was a minor component, and the major product (62%) was 1,2-O-isopropylidene- β -L-idofuranose (5). The L-sorbose (6, 3%) probably arose from 1⁷. Component 8 was tentatively identified as 2,5-anhydro-D-glucose, and component 9 was identified as 3,6-anhydro-L-idose (see below). This result was reproducible (Table I, entry 1b). During chromatog-

H₂C
$$H_2$$
C H_2 C H

TABLE I

COMPOSITION OF THE PRODUCT FROM HYDROLYSIS OF THE EPOXIDE 2

Entry	Conditions			Product ^a composition (%)						
	Acid conc. (M)	Temp. (deg.)	Time (h)	2	7	5	8	9	6	1
1 ^b	0.025	45	2.5	13	0	62	7	1	3	15
				18	0	56	7	1	1	18
2	0.025	50	4	7	0	41	12	1	1	40
3^b	0.05	50	8	0	1	4	11	trace	3	81
				0	1	5	14	trace	3	76
4	0.1	50-60	3.5	0	2	trace	12	1	2	85
5	1	100	6	0	88	0	0	1	0	10

^aElution time (T_G) relative to that for glucose: **2**, 0; **7**, 0; **5**, 0.19; **8**, 0.33; **9**, 0.44; **6**, 0.94; **1**, 0.98. ^bDuplicate experiments.

raphy, 2 gave a peak with considerable tailing (presumably due to decomposition) but no discrete peaks corresponding to the other components, which, therefore, were not artefacts produced during analysis.

The observation that L-idose was only a minor component of the syrup apparently conflicts with the claim² that pure L-idose was obtained. However, no evidence was presented² to indicate the purity of the syrupy product. Moreover, the conversion of this syrup into L-idose diethyl dithioacetal in good yield does not prove the presence of L-idose, since this derivative could be formed from products (for example, 2 or 5) that are convertible into L-idose under vigorous acidic conditions. The presence of a significant amount of 5 is consistent with earlier work⁸ which showed that conditions more vigorous than those noted above were required to hydrolyse 5 to L-idose.

When the temperature and reaction time were increased slightly, the extent of hydrolysis of 2 was much greater (Table I, entry 2). Under more vigorous conditions (entries 3 and 4) including those (entry 3) reported⁸ for the hydrolysis of 5 to L-idose, the major product was L-idose with no residual 2, but hydrolysis was not complete and some conversion into 1,6-anhydro-L-idose (7) had occurred.

In the more recent report³ on this method for the synthesis of L-idose, an acid concentration (0.05M) higher than that in the earlier report² was used, without comment. It is clear from the data in Table I that the concentration of the acid used has a considerable influence on the product composition, and the use of 0.05M acid in our experiments did not give pure L-idose.

The purest sample of L-idose was obtained by hydrolysis of 5 in M H_2SO_4 at 50° for 3.5 h; the syrupy product comprised L-idose (92%), 5 (5%), 6 (2%), and 7 (1%). This result shows that, in the earlier experiments, 8 and 9 did not arise by hydrolysis of 5, but must have originated from 2. Component 9 was identified as 3,6-anhydro-L-idose by comparison with the product of hydrolysis of 3,6-anhydro-1,2-O-isopropylidene- β -L-idofuranose⁵.

After hydrolysis of the epoxide 2 under even more vigorous conditions⁹ (M H_2SO_4 , 100°, 6 h; Table I, entry 5), 8 disappeared and the product was preponderantly 7 (88%) together with L-idose (10%) and 3,6-anhydro-L-idose (9, 1%). The ratio of 7 to L-idose was similar to that previously reported¹⁰. Acetylation of the mixture followed by crystallisation gave pure 2,3,4-tri-O-acetyl-1,6-anhydro- β -L-idopyranose, which is conveniently prepared by this route.

Buchanan and Oakes⁵ found that 3,5-anhydro-1,2-O-isopropylidene-α-Dglucofuranose (10), obtained by isomerisation of 2 in alkali, was hydrolysed in acid to 7 via an anhydro sugar and L-idose. When 10 was hydrolysed under the above mild conditions (0.05M, 45°, 2.5 h), the major product (T_G 0.28) was different from the compounds obtained by hydrolysis of 2; hence, the unidentified component (8, $T_{\rm G}$ 0.33) was not 3,5-anhydro-D-glucose. Component 8 was stable in 0.1M acid at 50° for 3.5 h and thus is unlikely to be a terminal epoxide; 8 was hydrolysed under more vigorous conditions. 2,5-Anhydroaldoses are stable towards mild acid, but are destroyed under more vigorous conditions^{4,11}. Thus, it is possible that 8 is the elusive 2,5-anhydro-D-glucose and that hydrolysis of the ido-epoxide parallels that of the gluco-epoxide 3 and gives L-idose by hydration of the epoxide, and 2,5-anhydro-D-glucose by an intramolecular reaction (presumably via an acyclic transitionstate). Support for this suggestion was obtained by using a specific assay (indolehydrochloric acid^{12,14}) for 2,5-anhydrohexoses. Both 2 and 3, before and after hydrolysis, gave positive responses, with the gluco-epoxide 3 giving the greater response.

Thus, acid hydrolysis of 2 does not give a quantitative yield of L-idose, but, under suitable conditions, L-idose is the major product. The major pathway to L-idose first involves opening of the epoxide ring and then hydrolysis of the isopropylidene acetal, so that it is not necessary to invoke conformational differences between acyclic transition-states during hydrolysis to explain the behaviour of the gluco-(3) and ido-epoxide (2).

EXPERIMENTAL

Materials. — Chromatographically homogeneous samples of **2**, **10**, and 3,6-anhydro-1,2-O-isopropylidene-β-L-idofuranose were prepared as described⁵. Deacetylation of 2,3,4-tri-O-acetyl-1,6-anhydro-β-L-idopyranose¹³ and 3,5,6-tri-O-acetyl-1,2-O-isopropylidene-β-L-idofuranose¹ gave **7** and **5**, respectively. Syrupy L-idose was prepared by deacetylation of 1,2,3,4,6-penta-O-acetyl-β-L-idopyranose⁷. 5,6-Anhydro-1,2-O-isopropylidene-α-D-glucofuranose was prepared as described¹⁴.

Chromatography. — Borate ion-exchange analysis was carried out by the Macromolecular Analysis Service of the University of Birmingham. The $T_{\rm G}$ values are the retention times relative to that for D-glucose.

Acid hydrolysis of anhydro sugars. — (a) A solution of 2 (0.5 g) in 25mM $\rm H_2SO_4$ (10 mL) was maintained at 45° for 2.5 h, cooled, neutralised with barium carbonate, filtered through Celite, and concentrated under reduced pressure. A solution of the syrupy residue in methanol was filtered and concentrated, to give a syrupy residue (0.42 g), $[\alpha]_D$ –21° (c 1, water); lit. $[\alpha]_D$ –13° (water). The results of borate ion-exchange chromatography of this syrup are shown in Table I.

- (b) The experiment was repeated as in (a), but with variations (enties 2-5) shown in Table I
- (c) The anhydro sugar 10 was hydrolysed as in (a). Borate ion-exchange chromatography of the resulting, syrupy product showed a major peak with $T_{\rm G}$ 0.28.
- (d) Hydrolysis of 3,6-anhydro-1,2-O-isopropylidene- β -L-idofuranose, as in (a), gave a major product with $T_{\rm G}$ 0.44.

Indole assay¹². — A solution of the sugar derivative (\sim 1.4 mg) in 25mM H_2SO_4 (2 mL) was stored at 45° for 2.5 h, and then aqueous 5% HCl (2 mL) and 1% orcinol in spectroscopic ethanol (2 mL) were added. The mixture was kept at 95° for 5 min, cooled, and diluted with spectroscopic ethanol (2 mL), and the absorbance was measured at 490 and 520 nm against a reaction blank containing no sugar. The results were as follows:

	Weight (mg)	$A_{490} - A_{520}$	
2	1.44	0.49	
3	1.42	1.31	
5	1.44	0.26	
MAG^a	2.98	0.01	

^a1,2-O-Isopropylidene- α -D-glucofuranose.

ACKNOWLEDGMENTS

We thank Koch-Light Laboratories, Ltd., and the S.E.R.C. for a CASE studentship (to A.K.S.).

REFERENCES

J. L. STIRLING, D. ROBINSON, A. H. FENSOM, P. F. BENSON, AND J. E. BAKER, *Lancet*, (1978) 147;
 J. J. HOPWOOD, V. MULLER, A. SMITHSON, AND N. BAGGETT, *Clin. Chim. Acta*, 92 (1979) 257–265.

- 2 M. BLANC-MUESSER AND J. DEFAYE, Synthesis, (1977) 568-569.
- 3 M. BLANC-MUESSER, J. DEFAYE, D. HORTON, AND J.-H. TSAI, Methods Carbohydr. Chem., 8 (1980) 177–183.
- 4 C. A. DEKKER AND T. HASHIZUME, Arch. Biochem. Biophys., 78 (1958) 348-358.
- 5 J. G. BUCHANAN AND E. M. OAKES, Carbohydr. Res., 1 (1965) 242-253.
- 6 J. F. KENNEDY AND J. E. FOX, Methods Carbohydr. Chem., 8 (1980) 3-12.
- 7 L. VARGHA, Chem. Ber., 87 (1954) 1351-1356.
- 8 F. SHAFIZADEH, Methods Carbohydr. Chem., 1 (1962) 144-145.
- 9 L. F. WIGGINS, J. Chem. Soc., (1949) 1590-1592.
- 10 S. J. ANGYAL AND K. DAWES, Aust. J. Chem., 21 (1968) 2747–2760.
- 11 M. CIFONELLI, J. A. CIFONELLI, R. MONTGOMERY, AND F. SMITH, J. Am. Chem. Soc., 77 (1955) 121–125.
- 12 Z. DISCHE AND E. BORENFREUND, J. Biol. Chem., 184 (1950) 517-522.
- 13 P. J. STOFFYN AND R. W. JEANLOZ, J. Biol. Chem., 235 (1960) 2507-2510.
- 14 H. OHLE AND L. VARGHA, Ber., 62 (1929) 2435-2444.